Solveeit Logo

Question

Mathematics Question on Methods of Integration

x3sin[tan1(x)4]1+x8dx\int{\frac{{{x}^{3}}\sin [{{\tan }^{-1}}{{(x)}^{4}}]}{1+{{x}^{8}}}}dx is equal to:

A

14cos[tan1(x4)]+c\frac{1}{4}\cos [{{\tan }^{-1}}({{x}^{4}})]+c

B

14sin[tan1(x4)]+c\frac{1}{4}\sin [{{\tan }^{-1}}({{x}^{4}})]+c

C

14cos[tan1(x4)]+c-\frac{1}{4}\cos [{{\tan }^{-1}}({{x}^{4}})]+c

D

14sec1[tan1(x4)]+c\frac{1}{4}{{\sec }^{-1}}[{{\tan }^{-1}}({{x}^{4}})]+c

Answer

14cos[tan1(x4)]+c-\frac{1}{4}\cos [{{\tan }^{-1}}({{x}^{4}})]+c

Explanation

Solution

Let I=x3sin[tan1(x4)]dx1+x8I=\int{\frac{{{x}^{3}}\sin [{{\tan }^{-1}}({{x}^{4}})]dx}{1+{{x}^{8}}}} Let x4=t{{x}^{4}}=t \Rightarrow 4x3dx=dt4{{x}^{3}}dx=dt \therefore I=14sin(tan1(t))dt1+t2I=\int{\frac{1}{4}\frac{\sin ({{\tan }^{-1}}(t))dt}{1+{{t}^{2}}}} Let tan1t=u{{\tan }^{-1}}t=u \Rightarrow 11+t2dt=du\frac{1}{1+{{t}^{2}}}dt=du \therefore I=14sinuduI=\int{\frac{1}{4}\sin u\,du} =14cosu+c=14costan1(t)+c=-\frac{1}{4}\cos u+c=-\frac{1}{4}\cos {{\tan }^{-1}}(t)+c =14costan1(x4)+c=-\frac{1}{4}\cos {{\tan }^{-1}}({{x}^{4}})+c