Question
Mathematics Question on Methods of Integration
∫1+x8x3sin[tan−1(x)4]dx is equal to:
A
41cos[tan−1(x4)]+c
B
41sin[tan−1(x4)]+c
C
−41cos[tan−1(x4)]+c
D
41sec−1[tan−1(x4)]+c
Answer
−41cos[tan−1(x4)]+c
Explanation
Solution
Let I=∫1+x8x3sin[tan−1(x4)]dx Let x4=t ⇒ 4x3dx=dt ∴ I=∫411+t2sin(tan−1(t))dt Let tan−1t=u ⇒ 1+t21dt=du ∴ I=∫41sinudu =−41cosu+c=−41costan−1(t)+c =−41costan−1(x4)+c