Question
Mathematics Question on integral
∫x4+1x2+1dx
A
21loge(x2+1)+c
B
21tan−1(x2x2+1)+c
C
21tan−1(x2+1)+c
D
21tan−1(x2x2−1)+c
Answer
21tan−1(x2x2−1)+c
Explanation
Solution
∫x4+1x2+1dx=∫(x2+x21)(1+x21)dx
=∫(x−x1)2+2(1+x21)dx
Put x−x1=t⇒(1+x21)dx=dt
=∫t2+(2)2dt=21tan−1(2t)+c
=21tan−1(2xx2−1)+c