Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

sin5x2sinx2dx\int\frac{\sin \frac{5x}{2}}{\sin \frac{x}{2}} dx is equal to : (where cc is a constant of integration)

A

2x+sinx+2sin2x+c2x + sin \,x + 2 sin\,2x + c

B

x+2sinx+2sin2x+cx + 2\,sinx + 2\,sin2x + c

C

x+2sinx+sin2x+cx + 2\, sin x + sin \,2x + c

D

2x+sinx+sin2x+c2x + sinx + sin2x + c

Answer

x+2sinx+sin2x+cx + 2\, sin x + sin \,2x + c

Explanation

Solution

sin5x2sinx2dx=2sin5x2cosx22sinx2cosx2dx\int\frac{\sin \frac{5x}{2}}{\sin \frac{x}{2}} dx = \int \frac{2\sin \frac{5x}{2} \cos \frac{x}{2}}{2\sin \frac{x}{2} \cos \frac{x}{2}} dx
=sin3x+sin2xsinxdx=\int \frac{\sin 3x +\sin 2x}{\sin x} dx
=3sinx4sin3x2sinxcosxsinxdx= \int \frac{3\sin x-4\sin^{3}x-2\sin x\cos x}{\sin x}dx
=(34sin2x+2cosx)dx= \int \left(3-4\sin^{2}x+2\cos x \right)dx
=(32(1cos2x)+2cosx)dx=\int \left(3-2\left(1-\cos2x\right)+2\cos x\right)dx
=(1+2cos2x+2cosx)dx=\int\left(1+2\cos2x+2\cos x\right)dx
=x+sin2x+2sinx+c=x+\sin2x+2\sin x +c