Question
Mathematics Question on integral
∫sin4x+cos4xsin2x is equal to:
A
2tan−1(tan2x)+C
B
tan−1(xtan2x)+C
C
tan−1(tan2x)+C
D
None of the above
Answer
tan−1(tan2x)+C
Explanation
Solution
Let I=∫sin4x+cos4xsin2xdx
Dividing the numerator and denominator by cos4x
I=∫tan4x+12tanx⋅sec2xdx
Let tanx=u
(sec2x)dx=du
=∫1+u42udu
Let u2=z
2udu=dz
I=∫1+z2dz
∴I=tan−1z+c
∴I=tan−1u2+c
∴I=tan−1(tan2x)+c