Solveeit Logo

Question

Mathematics Question on integral

sin2xsin4x+cos4x\int \frac{\sin 2 x}{\sin ^{4} x+\cos ^{4} x} is equal to:

A

2tan1(tan2x)+C2 \tan ^{-1}\left(\tan ^{2} x\right)+C

B

tan1(xtan2x)+C\tan ^{-1}\left(x \tan ^{2} x\right)+C

C

tan1(tan2x)+C\tan ^{-1}\left(\tan ^{2} x\right)+C

D

None of the above

Answer

tan1(tan2x)+C\tan ^{-1}\left(\tan ^{2} x\right)+C

Explanation

Solution

Let I=sin2xsin4x+cos4xdxI =\int \frac{\sin 2 x }{\sin ^{4} x +\cos ^{4} x } dx
Dividing the numerator and denominator by cos4x\cos ^{4} x
I=2tanxsec2xtan4x+1dxI=\int \frac{2 \tan x \cdot \sec ^{2} x}{\tan ^{4} x+1} d x
Let tanx=u\tan x = u
(sec2x)dx=du\left( \sec ^{2} x \right) dx = du
=2u1+u4du=\int \frac{2 u }{1+ u ^{4}} du
Let u2=zu ^{2}= z
2udu=dz2 u du = dz
I=dz1+z2I =\int \frac{ dz }{1+ z ^{2}}
I=tan1z+c\therefore I =\tan ^{-1} z + c
I=tan1u2+c\therefore I =\tan ^{-1} u ^{2}+ c
I=tan1(tan2x)+c\therefore I =\tan ^{-1}\left(\tan ^{2} x \right)+ c