Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

secxdxcos2x\int \frac{sec\,x\,dx}{\sqrt{cos\,2\,x}} is equal to

A

2sin1(tanx)+C2\, \sin^{-1}\, (\tan\,x) + C

B

tan1(tanx2)+C\tan^{-1}\,\left(\frac{\tan\,x}{2}\right)+C

C

sin1(tanx)+C\sin^{-1}\, (\tan\,x) + C

D

12sin1(tanx)+C\frac{1}{2}\sin^{-1}\,\left(\tan\,x\right)+C

Answer

sin1(tanx)+C\sin^{-1}\, (\tan\,x) + C

Explanation

Solution

Let I=secxcos2xdx I =\int \frac{\sec x}{\sqrt{\cos 2 x}} d x
=secx1tan2x1+tan2xdx=\int \frac{\sec x}{\sqrt{\frac{1-\tan ^{2} x}{1+\tan ^{2} x}}} d x
=sec2x1tan2xdx=\int \frac{\sec ^{2} x}{\sqrt{1-\tan ^{2} x}} d x
Put tanx=t\tan x=t
sec2xdx=dt\Rightarrow \sec ^{2} x d x =d t
I=dt1t2\therefore I =\int \frac{d t}{\sqrt{1-t^{2}}}
=sin1t+C=\sin ^{-1} t+C
=sin1(tanx)+C=\sin ^{-1}(\tan x)+C