Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

secxcosecx2cotxsecxcosecxdx\int{\frac{\sec x cosec x}{2\cot x-\sec x\cos ecx}}dx is equal to

A

logsecx+tanx+c\log |\sec x+\tan x|+c

B

logsecx+cosecx+c\log |\sec x+\cos ecx|+c

C

12logsec2x+tan2x+c\frac{1}{2}\log |\sec 2x+\tan 2x|+c

D

logsec2x+cosec2x+c\log |\sec 2x+\cos ec2x|+c

Answer

12logsec2x+tan2x+c\frac{1}{2}\log |\sec 2x+\tan 2x|+c

Explanation

Solution

secxcosecx2cotxsecxcosecxdx\int{\frac{\sec x\cos ecx}{2\cot x-\sec x\cos ecx}}dx
=1cosxsinx2cosxsinx1sinxcosxdx=\int{\frac{\frac{1}{\cos x\sin x}}{\frac{2\cos x}{\sin x}-\frac{1}{\sin x\cos x}}}dx
=dx2cos2x1=\int{\frac{dx}{2{{\cos }^{2}}x-1}}
=dxcos2xsin2x=sec2xdx=\int{\frac{dx}{{{\cos }^{2}}x-{{\sin }^{2}}x}=\int{\sec 2x\,dx}}
=12logsec2x+tan2x+c=\frac{1}{2}\log |\sec 2x+\tan 2x|+c