Solveeit Logo

Question

Mathematics Question on Definite Integral

(sinx+cosx)(2sin2x)sin22xdx=\int \frac{\left(\sin x + \cos x\right)\left(2 - \sin 2x\right)}{\sin^{2} 2x}dx =

A

sinx+cosxsin2x+c\frac{\sin x + \cos x}{\sin2x } + c

B

sinxcosxsin2x+c\frac{\sin x - \cos x}{\sin2x} +c

C

sinxsinx+cosx+c\frac{\sin \, x}{\sin x + \cos x} +c

D

sinxsinxcosx+c\frac{\sin \, x}{\sin x - \cos x} + c

Answer

sinxcosxsin2x+c\frac{\sin x - \cos x}{\sin2x} +c

Explanation

Solution

We have,
I=(sinx+cosx)(2sin2x)sin22xdxI=\int \frac{(\sin x+\cos x)(2-\sin 2 x)}{\sin ^{2} 2 x} d x
Put sinxcosx=t(sinx+cosx)dx=dt\sin x-\cos x=t \Rightarrow(\sin x+\cos x) d x=d t
and (sinxcosx)2=t21sin2x=t2(\sin x-\cos x)^{2}=t^{2} \Rightarrow 1-\sin 2 x=t^{2}
sin2x=1t2\Rightarrow \, \sin 2 x=1-t^{2}
I=(2(1t2))dt(1t2)2\therefore \, I=\int \frac{\left(2-\left(1-t^{2}\right)\right) d t}{\left(1-t^{2}\right)^{2}}
I=(1+t2)dt(1t2)2\Rightarrow \, I=\int \frac{\left(1+t^{2}\right) d t}{\left(1-t^{2}\right)^{2}}
I1+t212t2+t4dt\Rightarrow \, I-\int \frac{1+t^{2}}{1-2 t^{2}+t^{4}} d t
I=1+1/t21t2+t22dt\Rightarrow \, I=\int \frac{1+1 / t^{2}}{\frac{1}{t^{2}}+t^{2}-2} d t
I=1+1t2(t1t)2dt\Rightarrow \, I=\int \frac{1+\frac{1}{t^{2}}}{\left(t-\frac{1}{t}\right)^{2}} d t
Put t1ty(1+1t2)dtdyt-\frac{1}{t}-y \Rightarrow \left(1+\frac{1}{t^{2}}\right) d t-d y
I=dyy2=1y+C\therefore \, I=\int \frac{d y}{y^{2}}=-\frac{1}{y}+C
I=1t1t+C\Rightarrow \, I=\frac{-1}{t-\frac{1}{t}}+C
I=t1t2+C\Rightarrow \, I=\frac{t}{1-t^{2}}+C
I=sinxcosxsin2x+C\Rightarrow \, I=\frac{\sin x-\cos x}{\sin 2 x}+C