Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

exx(xlogx+1)dx\int \frac{e^{x}}{x}\left(x\,log\,x+1\right)dx is equal to

A

exx+C\frac{e^{x}}{x}+C

B

xexlogx+Cxe^x\, log \,| x | +C

C

exlogx+Ce^x\, log | x | +C

D

x(ex+logx)+Cx(e^x +log \,|x|) + C

Answer

exlogx+Ce^x\, log | x | +C

Explanation

Solution

exx(xlogx+1)dx\int \frac{e^{x}}{x}(x \log x+1) d x
=exIIlogIxdx+exxdx=\int \underset{II}{e^{x}} \underset{I}{\log} x d x+\int \frac{e^{x}}{x} d x
=exlogxexxdx+exxdx+C=e^{x} \log x-\int \frac{e^{x}}{x} d x+\int \frac{e^{x}}{x} d x+C
=exlogx+C=e^{x} \log x+C