Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

ex(1+sinx)1+cosxdx=\int \frac{e^{x} \left(1 +\sin x\right)}{1+\cos x}dx=

A

ex(1+sinx1+cosx)+ce^{x}\left(\frac{ 1 +\sin x}{1+\cos x}\right) + c

B

excot(x2)+c- e^{x} \cot \left(\frac{x}{2} \right) + c

C

extan(x2)+ce^{x} \tan \left(\frac{x}{2} \right) + c

D

extanx+ce^{x} \tan x + c

Answer

extan(x2)+ce^{x} \tan \left(\frac{x}{2} \right) + c

Explanation

Solution

ex(1+sinx1+cosx)dx=ex(1+sinx2cos2x2)dx\int e^{x} \left(\frac{1+\sin x}{1+\cos x}\right)dx = \int e^{x} \left(\frac{1+\sin x}{2\cos^{2} \frac{x}{2}}\right) dx
=ex(12cos2x2+2sinx2cosx22cos2x2)dx=\int e^{x} \left(\frac{1}{2\cos^{2} \frac{x}{2}} + \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2\cos^{2} \frac{x}{2}}\right) dx
=ex(12sec2x2+tanx2)dx=extanx2+c= \int e^{x} \left(\frac{1}{2} \sec^{2} \frac{x}{2} + \tan \frac{x}{2}\right) dx =e^{x} \tan \frac{x}{2} + c