Question
Mathematics Question on Integration by Parts
∫(3+x2)2ex2(2x+x3)dx is equal to :
A
(3+x2)ex2+k
B
21(3+x2)2ex2+k
C
41(3+x2)2ex2+k
D
21(3+x2)ex2+k
Answer
21(3+x2)ex2+k
Explanation
Solution
The correct answer is D:21(3+x2)ex2+k
Put x2=t⇒2xdx=dt
I=∫(3+x2)2ex2(2+x2)xdx=21∫et(3+t)2(2+t)dt
=21∫(3+t)2et(3+t−1)dt=21∫et[3+t1−(3+t)21]dt
=21et3+t1+k[∵dtd(3+t1)=(3+t)2−1]
=213+x2ex2+k