Solveeit Logo

Question

Mathematics Question on Integration by Parts

ex2(2x+x3)(3+x2)2dx\int \frac{e^{x^2}\left(2x+x^{3}\right)}{\left(3+x^{2}\right)^{2}} dx is equal to :

A

ex2(3+x2)+k\frac{e^{x^2}}{\left(3+x^{2}\right) } + k

B

12ex2(3+x2)2+k\frac{1}{2} \frac{e^{x^2}}{\left(3+x^{2}\right)^{2}} + k

C

14ex2(3+x2)2+k\frac{1}{4} \frac{e^{x^2}}{\left(3+x^{2}\right)^{2}} + k

D

12ex2(3+x2)+k\frac{1}{2} \frac{e^{x^2}}{\left(3+x^{2}\right)} + k

Answer

12ex2(3+x2)+k\frac{1}{2} \frac{e^{x^2}}{\left(3+x^{2}\right)} + k

Explanation

Solution

The correct answer is D:12ex2(3+x2)+k\frac{1}{2}\frac{e^{x^{2}}}{(3+x^2)}+k
Put x2=t2xdx=dtx^{2}=t \Rightarrow 2 x d x=d t
I=ex2(2+x2)xdx(3+x2)2=12et(2+t)(3+t)2dtI=\int \frac{e^{x^{2}}\left(2+x^{2}\right) x d x}{\left(3+x^{2}\right)^{2}}=\frac{1}{2} \int e^{t} \frac{(2+t)}{(3+t)^{2}} d t
=12et(3+t1)(3+t)2dt=12et[13+t1(3+t)2]dt=\frac{1}{2} \int \frac{e^{t}(3+t-1)}{(3+t)^{2}} d t=\frac{1}{2} \int e^{t}\left[\frac{1}{3+t}-\frac{1}{(3+t)^{2}}\right] d t
=12et13+t+k[ddt(13+t)=1(3+t)2]=\frac{1}{2} e^{t} \frac{1}{3+t}+k\left[\because \frac{d}{d t}\left(\frac{1}{3+t}\right)=\frac{-1}{(3+t)^{2}}\right]
=12ex23+x2+k=\frac{1}{2} \frac{e^{x^{2}}}{3+x^{2}}+k