Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

dxxx\int\frac{dx}{x-\sqrt{x}} is equal to

A

2logx1+C2\, log\, \left|\sqrt{x}-1\right|+C

B

2logx+1+C2\, log\, \left|\sqrt{x}+1\right|+C

C

logx1+Clog\, \left|\sqrt{x}-1\right|+C

D

12logx+1+C\frac{1}{2}log\, \left|\sqrt{x}+1\right|+C

Answer

2logx1+C2\, log\, \left|\sqrt{x}-1\right|+C

Explanation

Solution

Let I=dxxx=dxx(x1)I=\int \frac{d x}{x-\sqrt{x}}=\int \frac{d x}{\sqrt{x}(\sqrt{x}-1)}
Put x1=t\sqrt{x}-1=t
12xdx=dt\Rightarrow \frac{1}{2 \sqrt{x}} d x=d t
I=2dtt=2logt+C\therefore I=\int \frac{2 d t}{t}=2 \log |t|+C
=2logx1+C=2 \log |\sqrt{x}-1|+C