Question
Mathematics Question on Integrals of Some Particular Functions
∫1−e2xdx is equal to
A
log∣e−x+e−2x−1∣+C
B
log∣ex+e2x−1∣+C
C
−log∣e−x+e−2x−1∣+C
D
−log∣e−2x+e−2x−1∣+C
Answer
−log∣e−x+e−2x−1∣+C
Explanation
Solution
Let I=∫1−e2xdx=∫e−2x−1e−xdx Put t=e−x
⇒ dt=−e−xdx
∴ I=∫−t2−1dt=−log∣t+t2−1∣+c
=−log∣e−x+e−2x−1+c