Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

dx1e2x\int{\frac{dx}{\sqrt{1-{{e}^{2x}}}}} is equal to

A

logex+e2x1+C\log |{{e}^{-x}}+\sqrt{{{e}^{-2x}}-1}|+C

B

logex+e2x1+C\log |{{e}^{x}}+\sqrt{{{e}^{2x}}-1}|+C

C

logex+e2x1+C-\log |{{e}^{-x}}+\sqrt{{{e}^{-2x}}-1}|+C

D

loge2x+e2x1+C-\log |{{e}^{-2x}}+\sqrt{{{e}^{-2x}}-1}|+C

Answer

logex+e2x1+C-\log |{{e}^{-x}}+\sqrt{{{e}^{-2x}}-1}|+C

Explanation

Solution

Let I=dx1e2x=exe2x1dxI=\int{\frac{dx}{\sqrt{1-{{e}^{2x}}}}}=\int{\frac{{{e}^{-x}}}{\sqrt{{{e}^{-2x}}-1}}}dx Put t=ext={{e}^{-x}}
\Rightarrow dt=exdxdt=-{{e}^{-x}}dx
\therefore I=dtt21=logt+t21+cI=\int{-\frac{dt}{\sqrt{{{t}^{2}}-1}}}=-\log |t+\sqrt{{{t}^{2}}-1}|+c
=logex+e2x1+c=-\log |{{e}^{-x}}+\sqrt{{{e}^{-2x}}-1}+c