Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

dxsinxcosx+2\int \frac{dx}{\sin x - \cos x + \sqrt{2}} equals to

A

12tan(x2+π8)+C- \frac{1}{\sqrt{2}} \tan \left(\frac{x}{2} + \frac{\pi}{8}\right) + C

B

12tan(x2+π8)+C\frac{1}{2} \tan \left(\frac{x}{2} + \frac{\pi}{8}\right) + C

C

12cot(x2+π8)+C\frac{1}{\sqrt{2}} \cot\left(\frac{x}{2} + \frac{\pi}{8}\right) + C

D

12cot(x2+π8)+C- \frac{1}{\sqrt{2}} \cot \left(\frac{x}{2} + \frac{\pi}{8}\right) + C

Answer

12cot(x2+π8)+C- \frac{1}{\sqrt{2}} \cot \left(\frac{x}{2} + \frac{\pi}{8}\right) + C

Explanation

Solution

Let I=dxsinxcosx+2I = \int \frac{dx}{\sin x - \cos x + \sqrt{2}}
=dx2(sinxsinπ4cosxcosπ4+1)= \int \frac{dx}{\sqrt{2}\left(\sin x \sin \frac{\pi}{4} - \cos x \cos \frac{\pi}{4} + 1\right)}
=12dx1cos(x+π4)= \frac{1}{\sqrt{2}}\int \frac{dx}{1-\cos\left(x + \frac{\pi}{4}\right)}
=12dx2sin2(x2+π8)= \frac{1}{\sqrt{2}}\int \frac{dx}{2 \sin^{2} \left(\frac{x}{2} + \frac{\pi }{8}\right)}
=122cosec2(x2+π8)dx= \frac{1}{2\sqrt{2}}\int cosec^{2}\left(\frac{x}{2} + \frac{\pi }{8}\right)dx
=122cot(x2+π8)12+C= \frac{1}{2\sqrt{2}} \frac{-\cot \left(\frac{x}{2}+ \frac{\pi }{8}\right)}{\frac{1}{2}} +C
=12cot(x2+π8)+C= -\frac{1}{\sqrt{2}}\cot\left(\frac{x}{2}+\frac{\pi}{8}\right)+C