Solveeit Logo

Question

Mathematics Question on integral

dxsin2xcos2x\int \frac{dx}{\sin^2 x \cos^2 x} equals

A

tan x + cot x +C

B

tan x - cot x +C

C

tan x cot x +C

D

tan x-cot 2x +C

Answer

tan x - cot x +C

Explanation

Solution

LetI=dxsin2xcos2xI=\int \frac{dx}{\sin^2 x \cos^2 x}

= 1sin2xcos2xdx\int \frac{1}{\sin^2 x \cos^2 x}dx

= sin2x+cos2xsin2xcos2xdx\int \frac{\sin^2 x+ \cos^2 x}{\sin^2 x \cos^2 x}dx

= sin2xsin2xcos2xdx+cos2xsin2xcos2xdx\int \frac{\sin^2x}{\sin^2x\cos^2 x}dx+\int\frac{\cos^2 x}{\sin^2x\cos^2x}dx

= sec2xdx+cosec2xdx\int \sec^2 xdx+\int\cosec^2 xdx

= tanxcotx+C\tan x -\cot x+C

Hence, the correct answer is B.