Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

cosxsinx1+2sinxcosxdx\int{\frac{\cos x-\sin x}{1+2\sin x\cos x}}dx is equal to

A

1cosxsinx+C-\frac{1}{\cos x-\sin x}+C

B

cosx+sinxcosxsinx+C\frac{\cos x+\sin x}{\cos x-\sin x}+C

C

1sinx+cosx+C-\frac{1}{\sin x+\cos x}+C

D

1sinx+cosx+C\frac{1}{\sin x+\cos x}+C

Answer

1sinx+cosx+C-\frac{1}{\sin x+\cos x}+C

Explanation

Solution

Let I=cosxsinx(cosx+sinx)2dxI=\int{\frac{\cos x-\sin x}{{{(\cos x+\sin x)}^{2}}}}dx
Put cosx+sinx=t\cos x+\sin x=t
\Rightarrow (cosxsinx)dx=dt(\cos x-\sin x)dx=dt
\therefore I=1t2dtI=\int{\frac{1}{{{t}^{2}}}}dt
I=1t+c=1sinx+cosx+cI=-\frac{1}{t}+c=-\frac{1}{\sin x+\cos x}+c