Solveeit Logo

Question

Mathematics Question on Definite Integral

cos(2x)cos(2α)cos(x)cos(α)dx\int \frac{\cos(2x) - \cos(2\alpha)}{\cos(x) - \cos(\alpha)} \, dx is equal to

A

2(sin(x)xcos(α))+c2(\sin(x) - x \cos(\alpha)) + c

B

2(sin(x)2xcos(α))+c2(\sin(x) - 2x \cos(\alpha)) + c

C

2(sin(x)+xcos(α))+c2(\sin(x) + x \cos(\alpha)) + c

D

2(sin(x)+2xcos(α))+c2(\sin(x) + 2x \cos(\alpha)) + c

Answer

2(sin(x)+xcos(α))+c2(\sin(x) + x \cos(\alpha)) + c

Explanation

Solution

cos2xcos2αcosxcosα\frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha}
We can use the identity cos2θ=2cos2θ1\cos 2\theta = 2 \cos^2 \theta - 1
to rewrite cos 2x as: cos2x=2cos2x1cos 2x = 2 cos^2 x - 1

Similarly, cos 2αcos\ 2α can be written as:
cos2α=2cos2α1\cos 2\alpha = 2 \cos^2 \alpha - 1
Substituting these expressions into the integrand, we have:
2cos2x12cos2α+1cosxcosα\frac{2 \cos^2 x - 1 - 2 \cos^2 \alpha + 1}{\cos x - cos \alpha}

Simplifying further:
2cos2x2cos2αcosxcosα\frac{2 \cos^2 x - 2 \cos^2 \alpha}{\cos x - cos \alpha}
Factoring out a 2 from the numerator:
2(cos2xcos2α)cosxcosα\frac{2 (\cos^2 x - cos^2 \alpha)}{cos x - cos \alpha}
Now, we can factor the numerator further using the difference of squares identity:
2[(cosx+cosα)(cosxcosα)]cosxcosα\frac{2[(\cos x + \cos \alpha)(\cos x - \cos \alpha)]}{\cos x - \cos \alpha}
Canceling out the common factor (cosxcosα)(cos x - cos α) in the numerator and denominator, we have:
2(cosx+cosα)2(\cos x + \cos \alpha)
Now we can integrate this expression:
2(cosx+cosα)dx\int 2 (\cos x + \cos \alpha) \, dx
Integrating term by term:
2cosxdx+2cosαdx2 \int \cos x \, dx + 2 \int \cos \alpha \, dx
The integral of cos x with respect to x is sin x, and the integral of a constant (cos α) with respect to x is the constant times x:
2sinx+2(cosα)x+c2 \sin x + 2 (\cos \alpha) x + c where c is the constant of integration.

Hence, the integral cos2xcos2αcosxcosαdx\int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} \, dx is equal to 2sinx+2(cosα)x+c2 \sin x + 2 (\cos \alpha) x + c, which corresponds to option (C) 2(sinx+xcosα)+c2(\sin x + x \cos \alpha) + c