Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

4x+17x128xdx\int{\frac{{{4}^{x+1}}-{{7}^{x-1}}}{{{28}^{x}}}}dx is equal to

A

17loge44x4loge77x+c\frac{1}{7{{\log }_{e}}4}{{4}^{-x}}-\frac{4}{{{\log }_{e}}7}{{7}^{-x}}+c

B

17loge44x+4loge77x++c\frac{1}{7{{\log }_{e}}4}{{4}^{-x}}+\frac{4}{{{\log }_{e}}7}{{7}^{-x}}++c

C

4xloge77xloge4+c\frac{{{4}^{-x}}}{{{\log }_{e}}7}-\frac{{{7}^{-x}}}{{{\log }_{e}}4}+c

D

4xloge47xloge7+c\frac{{{4}^{-x}}}{{{\log }_{e}}4}-\frac{{{7}^{-x}}}{{{\log }_{e}}7}+c

Answer

17loge44x4loge77x+c\frac{1}{7{{\log }_{e}}4}{{4}^{-x}}-\frac{4}{{{\log }_{e}}7}{{7}^{-x}}+c

Explanation

Solution

Let I=\int{\left\\{ \frac{{{4}^{x+1}}}{{{28}^{x}}}-\frac{{{7}^{x-1}}}{{{28}^{x}}} \right\\}}dx
=417xdx1714xdx=4\int{\frac{1}{{{7}^{x}}}}dx-\frac{1}{7}\int{\frac{1}{{{4}^{x}}}}dx
=4.7xloge7+17loge44x+c=-\frac{{{4.7}^{-x}}}{{{\log }_{e}}7}+\frac{1}{7{{\log }_{e}}4}{{4}^{-x}}+c
=17loge44x4.7xloge7+c=\frac{1}{7{{\log }_{e}}4}{{4}^{-x}}-\frac{{{4.7}^{-x}}}{{{\log }_{e}}7}+c