Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

3x19xdx\int\frac{3 ^{x}}{\sqrt{1-9 ^{x}}}dx\quadis equal to

A

(log3)sin1(3x)+C\left(log \, 3\right)sin^{-1}\left(3^{x}\right)+C

B

13sin1(3x)+C\frac{1}{3}sin^{-1}\left(3^{x}\right)+C

C

(1log3)sin1(3x)+C\left(\frac{1}{log 3}\right)sin^{-1}\left(3^{x}\right)+C

D

19sin1(3x)+C\frac{1}{9}sin^{-1}\left(3^{x}\right)+C

Answer

(1log3)sin1(3x)+C\left(\frac{1}{log 3}\right)sin^{-1}\left(3^{x}\right)+C

Explanation

Solution

Let I=3n19xdxI=\int \frac{3^{n}}{\sqrt{1-9^{x}}} \,d x
I=3x1(3×)2dx\Rightarrow \, I=\int \frac{3^{x}}{\sqrt{1-\left(3^{\times}\right)^{2}}} d x
put t=3xt=3^{x}
dt=3xlog3dxd t=3^{x} \log 3 \cdot d x
Then, I=1log3dt1t2I=\frac{1}{\log 3} \int \frac{d t}{\sqrt{1-t^{2}}}
I=1log3sin1t+C\Rightarrow\, I=\frac{1}{\log 3} \cdot \sin ^{-1} t+C
I=(1log3)sin1(3x)+C\Rightarrow\, I=\left(\frac{1}{\log 3}\right) \cdot \sin ^{-1}\left(3^{x}\right)+C