Question
Mathematics Question on Integrals of Some Particular Functions
∫1−9x3xdxis equal to
A
(log3)sin−1(3x)+C
B
31sin−1(3x)+C
C
(log31)sin−1(3x)+C
D
91sin−1(3x)+C
Answer
(log31)sin−1(3x)+C
Explanation
Solution
Let I=∫1−9x3ndx
⇒I=∫1−(3×)23xdx
put t=3x
dt=3xlog3⋅dx
Then, I=log31∫1−t2dt
⇒I=log31⋅sin−1t+C
⇒I=(log31)⋅sin−1(3x)+C