Solveeit Logo

Question

Mathematics Question on integral

2x+15x110xdx=\int \frac{2^{x+1} - 5^{x-1}}{10^{x}}dx =

A

2log55x+15log22x+C\frac{2}{\log 5}5^{x} + \frac{1}{5\log2}2^{x} +C

B

2log55x+15log22x+C\frac{- 2}{\log 5}5^{-x} + \frac{1}{5\log2}2^{-x} +C

C

1log55x+15log22x+C\frac{1}{\log 5}5^{- x} + \frac{1}{5 \log2}2^{-x} +C

D

noneofthesenone \,of \,these

Answer

2log55x+15log22x+C\frac{- 2}{\log 5}5^{-x} + \frac{1}{5\log2}2^{-x} +C

Explanation

Solution

2x+15x110xdx\int \frac{2^{x+1} - 5^{x - 1}}{10^x} dx
2x+1(2×5)x5x1(2×5)xdx\int \frac{2^{x+1}}{\left(2 \times5\right)^{x} } -\frac{5^{x-1}}{\left(2\times 5 \right)^{x}} dx
=(25x512x)dx=(2(5)x152x)dx= \int \left(\frac{2}{5^{x} } - \frac{5^{-1}}{2^{x}}\right)dx = \int \left(2\left(5\right)^{-x} -\frac{1}{5} 2^{-x}\right)dx
=2(5xlog5)15(2xlog2)+C= 2\left(\frac{5^{-x}}{- \log5 }\right) - \frac{1}{5} \left( \frac{2^{-x}}{-\log 2}\right)+C
=2log55x+15log22x+C= -\frac{2}{\log 5}5^{-x} + \frac{1}{5\log 2}2^{-x} + C