Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

18+2xx2dx\int \frac{1}{\sqrt{8+2x-x^{2}}} dx is equal to

A

13sin1(x13)+c\frac{1}{3} sin^{-1} \left(\frac{x-1}{3}\right) +c

B

sin1(x+13)+csin^{-1} \left(\frac{x+1}{3}\right) +c

C

13sin1(x+13)+c\frac{1}{3}sin^{-1} \left(\frac{x+1}{3}\right) +c

D

sin1(x13)+csin^{-1} \left(\frac{x-1}{3}\right) +c

Answer

sin1(x13)+csin^{-1} \left(\frac{x-1}{3}\right) +c

Explanation

Solution

dx8+2xx2=dx8(x22x+1)+1\int \frac{dx}{\sqrt{8+2x-x^{2}}}=\int \frac{dx}{\sqrt{8-\left(x^{2}-2x+1\right)+1}}
=dx32(x1)2=sin1(x13)+c=\int \frac{dx}{\sqrt{3^{2}-(x-1)^{2}}}=\sin ^{-1}\left(\frac{x-1}{3}\right)+c