Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

1e2θ+e2θdθ=\int \frac{1}{e^{2\theta}+e^{-2\theta}} d\theta=

A

12tan1(e2θ)+C\frac{1}{2} tan^{-1}\left(e^{2\theta}\right)+C

B

12tan1(e2θ)+C\frac{1}{2} tan^{-1}\left(e^{-2\theta}\right)+C

C

32tan1(e2θ)+C\frac{3}{2} tan^{-1}\left(e^{2\theta}\right)+C

D

12tan1(e2θ)+C\frac{1}{2} tan^{-1}\left(-e^{2\theta}\right)+C

Answer

12tan1(e2θ)+C\frac{1}{2} tan^{-1}\left(e^{2\theta}\right)+C

Explanation

Solution

Let I=1e2θ+e2θdθI = \int \frac{1}{e^{2\theta} + e^{-2\theta}} d\theta
=e2θ(e2θ)2+1dθ= \int \frac{e^{2\theta}}{(e^{2\theta})^2 +1 } d\theta
Put e2θ=te^{2\theta} = t
e2θ×2dθ=dt\Rightarrow e^{2\theta} \times 2\,d\theta = dt
I=12dtt2+1=12tan1(t)+C\therefore I = \frac{1}{2}\int \frac{dt}{t^2+1} = \frac{1}{2} tan^{-1}(t)+C
=12tan1(e2θ)+C=\frac{1}{2} tan^{-1} (e^{2\theta})+C