Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

11+cosaxdx\int{\frac{1}{1+\cos \,\,ax}}\,\,dx is equal to

A

cotax2+c\cot \,\frac{ax}{2}+c

B

1atanax2+c\frac{1}{a}\,\tan \,\frac{ax}{2}+c

C

1a(cosec ax - cot ax)+c\frac{1}{a}(\text{cosec ax - cot ax)+c}

D

1a(cosec ax + cot ax)+c\frac{1}{a}(\text{cosec ax + cot ax)+c}

Answer

1atanax2+c\frac{1}{a}\,\tan \,\frac{ax}{2}+c

Explanation

Solution

11+cosaxdx\int{\frac{1}{1+\cos \,ax}}\,dx
=dx2cos2(ax/2)=\int{\frac{dx}{2\,{{\cos }^{2}}\,(ax/2)}}
=12sec2ax2dx=12.tanax/2a/2=\frac{1}{2}\int{{{\sec }^{2}}\,\frac{ax}{2}\,dx=\frac{1}{2}}.\frac{\tan ax/2}{a/2}
=1atanax2+c=\frac{1}{a}\tan \frac{ax}{2}+c