Solveeit Logo

Question

Question: $\int e^x(\frac{x^4+x^3-3x^2+x-2}{(x-1)^2})dx=e^x(\frac{f(x)}{x-1})+C$ then $f(2)$ is equal to ($f(x...

ex(x4+x33x2+x2(x1)2)dx=ex(f(x)x1)+C\int e^x(\frac{x^4+x^3-3x^2+x-2}{(x-1)^2})dx=e^x(\frac{f(x)}{x-1})+C then f(2)f(2) is equal to (f(x)f(x) is a polynomial)

A

7

B

8

C

9

D

10

Answer

9

Explanation

Solution

The integral is of the form exG(x)dx=exH(x)+C\int e^x G(x) dx = e^x H(x) + C, where G(x)=x4+x33x2+x2(x1)2G(x) = \frac{x^4+x^3-3x^2+x-2}{(x-1)^2} and H(x)=f(x)x1H(x) = \frac{f(x)}{x-1}. This implies G(x)=H(x)+H(x)G(x) = H(x) + H'(x). We can decompose G(x)G(x) using polynomial long division or substitution. Let u=x1u = x-1, so x=u+1x = u+1. G(x)=(u+1)4+(u+1)33(u+1)2+(u+1)2u2G(x) = \frac{(u+1)^4+(u+1)^3-3(u+1)^2+(u+1)-2}{u^2} G(x)=u4+5u3+6u2+2u2u2=u2+5u+6+2u2u2G(x) = \frac{u^4+5u^3+6u^2+2u-2}{u^2} = u^2+5u+6 + \frac{2u-2}{u^2} Substituting back u=x1u=x-1: G(x)=(x1)2+5(x1)+6+2(x1)2(x1)2G(x) = (x-1)^2+5(x-1)+6 + \frac{2(x-1)-2}{(x-1)^2} G(x)=(x22x+1)+(5x5)+6+2x4(x1)2G(x) = (x^2-2x+1)+(5x-5)+6 + \frac{2x-4}{(x-1)^2} G(x)=x2+3x+2+2x4(x1)2G(x) = x^2+3x+2 + \frac{2x-4}{(x-1)^2} We need to find H(x)H(x) such that H(x)+H(x)=G(x)H(x)+H'(x) = G(x). Let H(x)=P(x)+Kx1H(x) = P(x) + \frac{K}{x-1}, where P(x)P(x) is a polynomial. Then H(x)=P(x)K(x1)2H'(x) = P'(x) - \frac{K}{(x-1)^2}. H(x)+H(x)=P(x)+P(x)+Kx1K(x1)2H(x)+H'(x) = P(x)+P'(x) + \frac{K}{x-1} - \frac{K}{(x-1)^2}. Comparing with G(x)=x2+3x+2+2x4(x1)2G(x) = x^2+3x+2 + \frac{2x-4}{(x-1)^2}: P(x)+P(x)=x2+3x+2P(x)+P'(x) = x^2+3x+2. If P(x)=x2+x+1P(x)=x^2+x+1, then P(x)=2x+1P'(x)=2x+1, and P(x)+P(x)=x2+3x+2P(x)+P'(x) = x^2+3x+2. Kx1K(x1)2=2x4(x1)2\frac{K}{x-1} - \frac{K}{(x-1)^2} = \frac{2x-4}{(x-1)^2}. Multiplying by (x1)2(x-1)^2, we get K(x1)K=2x4K(x-1)-K = 2x-4, which simplifies to Kx2K=2x4Kx-2K = 2x-4. Thus, K=2K=2. So, H(x)=x2+x+1+2x1H(x) = x^2+x+1 + \frac{2}{x-1}. Given H(x)=f(x)x1H(x) = \frac{f(x)}{x-1}: f(x)x1=x2+x+1+2x1=(x2+x+1)(x1)+2x1\frac{f(x)}{x-1} = x^2+x+1 + \frac{2}{x-1} = \frac{(x^2+x+1)(x-1)+2}{x-1} f(x)=(x2+x+1)(x1)+2=(x31)+2=x3+1f(x) = (x^2+x+1)(x-1)+2 = (x^3-1)+2 = x^3+1. We need to find f(2)f(2): f(2)=(2)3+1=8+1=9f(2) = (2)^3+1 = 8+1 = 9.