Question
Question: $\int e^x \left[ \frac{x-3}{(x-1)^3} \right] dx$...
∫ex[(x−1)3x−3]dx

Answer
(x−1)2ex+C
Explanation
Solution
The integral ∫ex[(x−1)3x−3]dx is evaluated by recognizing the form ∫ex[f(x)+f′(x)]dx=exf(x)+C.
- Rewrite the numerator x−3 as (x−1)−2.
- Split the fraction: (x−1)3(x−1)−2=(x−1)3x−1−(x−1)32=(x−1)21−(x−1)32.
- Identify f(x)=(x−1)21.
- Calculate f′(x): f′(x)=dxd((x−1)−2)=−2(x−1)−3=−(x−1)32.
- The integrand is now in the form ex[f(x)+f′(x)].
- Apply the formula: ∫ex[f(x)+f′(x)]dx=exf(x)+C=ex⋅(x−1)21+C.