Solveeit Logo

Question

Question: $\int e^{\sin x}(\frac{x\cos^3x-\sin x}{\cos^2x})dx$...

esinx(xcos3xsinxcos2x)dx\int e^{\sin x}(\frac{x\cos^3x-\sin x}{\cos^2x})dx

Answer

esinx(xsecx)+Ce^{\sin x} (x - \sec x) + C

Explanation

Solution

The given integral is: I=esinx(xcos3xsinxcos2x)dxI = \int e^{\sin x}\left(\frac{x\cos^3x-\sin x}{\cos^2x}\right)dx First, simplify the expression inside the parenthesis by splitting the fraction: xcos3xsinxcos2x=xcos3xcos2xsinxcos2x\frac{x\cos^3x-\sin x}{\cos^2x} = \frac{x\cos^3x}{\cos^2x} - \frac{\sin x}{\cos^2x} =xcosxsinxcosx1cosx= x\cos x - \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} =xcosxtanxsecx= x\cos x - \tan x \sec x So the integral becomes: I=esinx(xcosxtanxsecx)dxI = \int e^{\sin x}(x\cos x - \tan x \sec x)dx This integral is of the standard form eg(x)(f(x)+f(x)g(x))dx=eg(x)f(x)+C\int e^{g(x)}(f'(x) + f(x)g'(x))dx = e^{g(x)}f(x) + C. In this case, let g(x)=sinxg(x) = \sin x. Then, g(x)=cosxg'(x) = \cos x. We need to find a function f(x)f(x) such that f(x)+f(x)g(x)f'(x) + f(x)g'(x) equals the term in the parenthesis, i.e., f(x)+f(x)cosx=xcosxtanxsecxf'(x) + f(x)\cos x = x\cos x - \tan x \sec x.

Let's try to identify f(x)f(x). Consider f(x)=xsecxf(x) = x - \sec x. Now, let's find f(x)f'(x): f(x)=ddx(xsecx)=1secxtanxf'(x) = \frac{d}{dx}(x - \sec x) = 1 - \sec x \tan x Substitute f(x)f(x) and f(x)f'(x) into the expression f(x)+f(x)cosxf'(x) + f(x)\cos x: (1secxtanx)+(xsecx)cosx(1 - \sec x \tan x) + (x - \sec x)\cos x =1secxtanx+xcosxsecxcosx= 1 - \sec x \tan x + x\cos x - \sec x \cos x Since secxcosx=1cosxcosx=1\sec x \cos x = \frac{1}{\cos x} \cdot \cos x = 1, the expression simplifies to: =1secxtanx+xcosx1= 1 - \sec x \tan x + x\cos x - 1 =xcosxsecxtanx= x\cos x - \sec x \tan x This matches the expression inside the parenthesis in the integral. Therefore, the integral is of the form eg(x)(f(x)+f(x)g(x))dx\int e^{g(x)}(f'(x) + f(x)g'(x))dx with g(x)=sinxg(x) = \sin x and f(x)=xsecxf(x) = x - \sec x. The solution to the integral is eg(x)f(x)+Ce^{g(x)}f(x) + C. I=esinx(xsecx)+CI = e^{\sin x}(x - \sec x) + C

The final answer is esinx(xsecx)+C\boxed{e^{\sin x} (x - \sec x) + C}.

Explanation of the solution:

  1. Simplify the integrand: The given integral esinx(xcos3xsinxcos2x)dx\int e^{\sin x} \left(\frac{x \cos^3 x - \sin x}{\cos^2 x}\right) dx is simplified by splitting the fraction inside the parenthesis: esinx(xcosxtanxsecx)dx\int e^{\sin x} (x \cos x - \tan x \sec x) dx.
  2. Identify the pattern: This integral matches the form eg(x)(f(x)+f(x)g(x))dx=eg(x)f(x)+C\int e^{g(x)} (f'(x) + f(x) g'(x)) dx = e^{g(x)} f(x) + C. Here, g(x)=sinxg(x) = \sin x, so g(x)=cosxg'(x) = \cos x.
  3. Find f(x)f(x): We need to find a function f(x)f(x) such that f(x)+f(x)cosx=xcosxtanxsecxf'(x) + f(x) \cos x = x \cos x - \tan x \sec x. By inspection, we find that f(x)=xsecxf(x) = x - \sec x.
    • Verify: f(x)=1secxtanxf'(x) = 1 - \sec x \tan x.
    • Then f(x)+f(x)cosx=(1secxtanx)+(xsecx)cosx=1secxtanx+xcosx1=xcosxsecxtanxf'(x) + f(x) \cos x = (1 - \sec x \tan x) + (x - \sec x) \cos x = 1 - \sec x \tan x + x \cos x - 1 = x \cos x - \sec x \tan x, which matches the integrand.
  4. Apply the formula: Since f(x)f(x) and g(x)g(x) are identified, the integral evaluates to eg(x)f(x)+C=esinx(xsecx)+Ce^{g(x)}f(x) + C = e^{\sin x}(x - \sec x) + C.

Answer: esinx(xsecx)+Ce^{\sin x} (x - \sec x) + C