Solveeit Logo

Question

Question: $\int e^{3x-2} dx$...

e3x2dx\int e^{3x-2} dx

Answer

13e3x2+C\frac{1}{3}e^{3x-2} + C

Explanation

Solution

Solution:

Let

u=3x2dudx=3dx=du3.u = 3x - 2 \quad \Rightarrow \quad \frac{du}{dx} = 3 \quad \Rightarrow \quad dx = \frac{du}{3}.

Substitute into the integral:

e3x2dx=eudu3=13eudu=13eu+C.\int e^{3x-2} dx = \int e^{u} \frac{du}{3} = \frac{1}{3}\int e^u \, du = \frac{1}{3}e^u + C.

Replace uu with 3x23x-2:

13e3x2+C.\frac{1}{3}e^{3x-2} + C.

Minimal Explanation:
Substitute u=3x2u=3x-2 so that dx=du3dx=\frac{du}{3}. The integral becomes 13eudu=13eu+C\frac{1}{3}\int e^u\,du = \frac{1}{3}e^u + C. Substitute back.