Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

exlogaexdx\int e^{xloga }e^{x} dx is equal to

A

(ae)x+C(ae)^x+C

B

(ae)xlog(ae)+C\frac{(ae)^x}{log(ae)}+C

C

(e)x1+loga+C\frac{(e)^x}{1+log a}+C

D

NoneoftheseNone\,of\,these

Answer

(ae)xlog(ae)+C\frac{(ae)^x}{log(ae)}+C

Explanation

Solution

exlogaexdx\int e^{x\,log\,a} e^{x}dx
I=axexdx(i)I=\int a^{x}\cdot e^{x} dx \ldots\left(i\right)
I=[exaxlogeaexaxlogeadx]\Rightarrow I=\left[e^{x}\cdot\frac{a^{x}}{log_{e} a}-\int e^{x}\cdot\frac{a^{x}}{log_{e} a} dx\right]
I=exaxlogea1logeaexaxdx\Rightarrow I=\frac{e^{x}\cdot a^{x}}{log_{e}a}-\frac{1}{log_{e} a}\int e^{x}\cdot a^{x}\cdot dx
I=exaxlogea1logeaexaxdx\Rightarrow I=\frac{e^{x}\cdot a^{x}}{log_{e} a }-\frac{1}{log_{e} a} \int e^{x}\cdot a^{x}\cdot dx
I=exaxlogea1logeaI\Rightarrow I=\frac{e^{x}\cdot a^{x}}{log_{e} a}-\frac{1}{log_{e} a}\cdot I [from Et(i)]
(1+logealogea)\Rightarrow \left(\frac{1+log_{e} a}{log_{e} a}\right)
I=exaxlogeaI=\frac{e^{x}\cdot a^{x}}{log_{e} a}
(logee+logea)\Rightarrow \left(log_{e} e+log_{e} a\right)
I=exaxI=e^{x}\cdot a^{x}
I=(ea)xlog(ae)+c\Rightarrow I=\frac{\left(ea\right)^{x}}{log\left(ae\right)}+c