Question
Mathematics Question on Integrals of Some Particular Functions
∫exlogaexdx is equal to
A
(ae)x+C
B
log(ae)(ae)x+C
C
1+loga(e)x+C
D
Noneofthese
Answer
log(ae)(ae)x+C
Explanation
Solution
∫exlogaexdx
I=∫ax⋅exdx…(i)
⇒I=[ex⋅logeaax−∫ex⋅logeaaxdx]
⇒I=logeaex⋅ax−logea1∫ex⋅ax⋅dx
⇒I=logeaex⋅ax−logea1∫ex⋅ax⋅dx
⇒I=logeaex⋅ax−logea1⋅I [from Et(i)]
⇒(logea1+logea)
I=logeaex⋅ax
⇒(logee+logea)
I=ex⋅ax
⇒I=log(ae)(ea)x+c