Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

ex(cosec1x+1xx21)dx \int e^{x}\left(cosec^{-1}x+\frac{-1}{x\sqrt{x^{2}-1}}\right) \, dx is equal to

A

excosec1x+Ce^x cosec^{-1} x + C

B

exsin1x+Ce^x sin^{-1} x + C

C

exsec1x+Ce^x sec^{-1} x + C

D

excos1x+Ce^x cos^{-1} x + C

Answer

excosec1x+Ce^x cosec^{-1} x + C

Explanation

Solution

ex(cosec1x+1xx21)dx\int e^{x} \left(cosec^{-1} x+\frac{-1}{x\sqrt{x^{2}-1}}\right) dx
=excosec1xdxexxx21dx=\int e^{x} cosec^{-1}\,x\,dx-\int \frac{e^{x}}{x\sqrt{x^{2}-1}}dx
=[cosec1xex1xx21exdx]=\left[cosec^{-1}x\cdot e^{x}-\int \frac{-1}{x\sqrt{x^{2}-1}} e^{x}dx\right]
exxx21dx-\int \frac{e^{x}}{x\sqrt{x^{2}-1}}dx
=excosec1x+exxx21dx=e^{x}\cdot cosec^{-1}x+\int \frac{e^{x}}{x\sqrt{x^{2}-1}}dx
exx21xdx-\int \frac{e^{x}}{\sqrt{x^{2}-1}}\cdot x\,dx
=excosec1x+c=e^{x}\cdot cosec^{-1}x+c