Solveeit Logo

Question

Mathematics Question on integral

ex(cosxsinx)dx\int e^{x}\left(\cos x -\sin x\right)dx is equal to

A

excosx+Ce^{x} \cos x + C

B

exsinx+Ce^{x} \sin x + C

C

excosx+C- e^{x} \cos x + C

D

exsinx+C- e^{x} \sin x + C

Answer

excosx+Ce^{x} \cos x + C

Explanation

Solution

Let I=ex(cosxsinx)dxI = \int e^{x}\left(\cos x -\sin x\right)dx
=excosxdxexsinxdx= \int e^{x} \cos x dx -\int e^{x} \sin x dx
=excosxdx[ex(cosx)ex(cosx)dx]= \int e^{x} \cos x dx -\left[ e^{x}\left(- \cos x\right) -\int e^{x} \left(- \cos x\right)dx \right]
=excosxdx+excosxexcosxdx=\int e^{x} \cos x dx +e^{x} \cos x -\int e^{x} \cos x dx
=excosx+C= e^{x} \cos x +C