Question
Mathematics Question on integral
∫exx2(x−1)dx is equal to
A
x2ex+c
B
x2−ex+c
C
xex+c
D
x−ex+c
Answer
xex+c
Explanation
Solution
∫ex(x2x−1)dx =∫ex(x1−x21)dx =xex+c[∵∫ex[f(x)+f′(x)]dx=exf(x)+c]
∫exx2(x−1)dx is equal to
x2ex+c
x2−ex+c
xex+c
x−ex+c
xex+c
∫ex(x2x−1)dx =∫ex(x1−x21)dx =xex+c[∵∫ex[f(x)+f′(x)]dx=exf(x)+c]