Solveeit Logo

Question

Question: $\int dx \frac{1+z^x}{1-_{9}x}$...

dx1+zx19x\int dx \frac{1+z^x}{1-_{9}x}

Answer

1+zx19xdx=19ln19x+z1/99Ei(lnz9(19x))+C.\int\frac{1+z^x}{\,1-9x}\,dx=-\frac{1}{9}\ln|1-9x|+\frac{z^{1/9}}{9}\,Ei\Bigl(-\frac{\ln z}{9}(1-9x)\Bigr)+C.

Explanation

Solution

  1. Split the integral into two parts.

  2. In the first, substitute u=19xu=1-9x to integrate dx19x\int\frac{dx}{1-9x}.

  3. In the second, write zx=exlnzz^x=e^{x\ln z} and use the same substitution; recognize the definition of the exponential integral Ei(Au)Ei(-Au).

  4. Combine the answers.