Solveeit Logo

Question

Question: \[\int {\dfrac{1}{{{x^2}{{({x^4} + 1)}^{3/4}}}}} dx\] equals to A. \[{\left( {1 + \dfrac{1}{{{x^4}...

1x2(x4+1)3/4dx\int {\dfrac{1}{{{x^2}{{({x^4} + 1)}^{3/4}}}}} dx equals to
A. (1+1x4)1/4+c{\left( {1 + \dfrac{1}{{{x^4}}}} \right)^{1/4}} + c
B. (x4+1)1/4+c{\left( {{x^4} + 1} \right)^{1/4}} + c
C. (11x4)1/4+c{\left( {1 - \dfrac{1}{{{x^4}}}} \right)^{1/4}} + c
D. (1+1x4)1/4+c - {\left( {1 + \dfrac{1}{{{x^4}}}} \right)^{1/4}} + c

Explanation

Solution

We solve this question by making the denominator into simpler form by taking common x4{x^4} inside the bracket and then substitute the whole quantity inside the bracket as a single variable to make the integration easier.

  • Formula for differentiation is d(xm)dx=mxm1\dfrac{{d({x^m})}}{{dx}} = m{x^{m - 1}}
  • Formula for integration is xmdx=xm+1m+c\int {{x^m}dx = \dfrac{{{x^{m + 1}}}}{m}} + c

Complete step-by-step answer:
We assume the integral equal to II.
I=1x2(x4+1)3/4dxI = \int {\dfrac{1}{{{x^2}{{({x^4} + 1)}^{3/4}}}}} dx ...(i)...(i)
First we solve (x4+1)3/4{({x^4} + 1)^{3/4}} by breaking it.
Since, we know the property of exponents amn=[(am)n]{a^{mn}} = [{({a^m})^n}]
We can write 34=14×3\dfrac{3}{4} = \dfrac{1}{4} \times 3
Therefore, (x4+1)3/4=[(x4+1)14]3{({x^4} + 1)^{3/4}} = {\left[ {{{({x^4} + 1)}^{\dfrac{1}{4}}}} \right]^3} ...(ii)...(ii)
Taking x4{x^4} common from the bracket x4+1{x^4} + 1, we can write it as x4(1+1x4){x^4}(1 + \dfrac{1}{{{x^4}}})
Substitute the value x4+1=x4(1+1x4){x^4} + 1 = {x^4}(1 + \dfrac{1}{{{x^4}}}) in the equation (ii)(ii)
(x4+1)3/4=[(x4(1+1x4))14]3{({x^4} + 1)^{3/4}} = {\left[ {{{\left( {{x^4}(1 + \dfrac{1}{{{x^4}}})} \right)}^{\dfrac{1}{4}}}} \right]^3}
Using the property, (ab)m=am×bm{(ab)^m} = {a^m} \times {b^m} , take the power 14\dfrac{1}{4} on both the elements inside the bracket.
=[(x4)1/4×(1+1x4)1/4]3= {\left[ {{{({x^4})}^{1/4}} \times {{(1 + \dfrac{1}{{{x^4}}})}^{1/4}}} \right]^3}
Using the property amn=[(am)n]{a^{mn}} = [{({a^m})^n}]solve the powers.
$$
= {\left[ {{x^{4 \times \dfrac{1}{4}}} \times {{(1 + \dfrac{1}{{{x^4}}})}^{1/4}}} \right]^3} \\
= {\left[ {x \times {{(1 + \dfrac{1}{{{x^4}}})}^{1/4}}} \right]^3} \\

Using the property, $${(ab)^m} = {a^m} \times {b^m}$$ , take the power $$3$$ on both the elements inside the bracket. $$ = {x^3}{\left[ {{{(1 + \dfrac{1}{{{x^4}}})}^{1/4}}} \right]^3}$$ Using the property $${a^{mn}} = [{({a^m})^n}]$$solve the powers. $$ = {x^3}{\left[ {1 + \dfrac{1}{{{x^4}}}} \right]^{3 \times \dfrac{1}{4}}} \\\ = {x^3}{\left[ {1 + \dfrac{1}{{{x^4}}}} \right]^{\dfrac{3}{4}}} \\\

So, (x4+1)3/4=x3[1+1x4]34{({x^4} + 1)^{3/4}} = {x^3}{\left[ {1 + \dfrac{1}{{{x^4}}}} \right]^{\dfrac{3}{4}}}
Substitute the value of (x4+1)3/4{({x^4} + 1)^{3/4}}in equation (i)(i)
I=1x2×x3(1+1x4)34dxI = \int {\dfrac{1}{{{x^2} \times {x^3}{{\left( {1 + \dfrac{1}{{{x^4}}}} \right)}^{\dfrac{3}{4}}}}}} dx
=1x5(1+1x4)34dx= \int {\dfrac{1}{{{x^5}{{\left( {1 + \dfrac{1}{{{x^4}}}} \right)}^{\dfrac{3}{4}}}}}} dx ...(iii)...(iii)
Now, let us assume (1+1x4)=t\left( {1 + \dfrac{1}{{{x^4}}}} \right) = t
Then by differentiating both the sides, we get

0+(4)(x41)dx=dt \-4x5dx=dt  0 + ( - 4)({x^{ - 4 - 1}})dx = dt \\\ \- 4{x^{ - 5}}dx = dt \\\

Shifting the value 4 - 4 to Denominator of RHS
x5dx=dt(4){x^{ - 5}}dx = \dfrac{{dt}}{{( - 4)}}
Now, we can write xn=1xn{x^{ - n}} = \dfrac{1}{{{x^n}}}
dxx5=dt(4)\dfrac{{dx}}{{{x^5}}} = \dfrac{{dt}}{{( - 4)}} ...(iv)...(iv)
Substitute the values in the equation (iii)(iii)
I=1(t)34.dt(4)I = \int {\dfrac{1}{{{{\left( t \right)}^{\dfrac{3}{4}}}}}} .\dfrac{{dt}}{{( - 4)}}
Since we can bring out the constant in the denominator, the integral becomes
I=141(t)34dtI = \dfrac{1}{{ - 4}}\int {\dfrac{1}{{{{\left( t \right)}^{\dfrac{3}{4}}}}}} dt
Now, we can write xn=1xn{x^{ - n}} = \dfrac{1}{{{x^n}}}
I=14t34dtI = - \dfrac{1}{4}\int {{t^{ - \dfrac{3}{4}}}} dt
Now we solve the integration by the method xmdx=xm+1m+c\int {{x^m}dx = \dfrac{{{x^{m + 1}}}}{m}} + c
I=14[t34+134+1]+cI = - \dfrac{1}{4}\left[ {\dfrac{{{t^{\dfrac{{ - 3}}{4} + 1}}}}{{^{\dfrac{{ - 3}}{4} + 1}}}} \right] + c
Take LCM of pwers in the bracket .

I=14[t3+443+44]+c I=14[t1414]+c  I = - \dfrac{1}{4}\left[ {\dfrac{{{t^{\dfrac{{ - 3 + 4}}{4}}}}}{{^{\dfrac{{ - 3 + 4}}{4}}}}} \right] + c \\\ I = - \dfrac{1}{4}\left[ {\dfrac{{{t^{\dfrac{1}{4}}}}}{{^{\dfrac{1}{4}}}}} \right] + c \\\

Multiply both numerator and denominator by 44.

I=14×4[t144×14]+c I=14×4[×t14]+c I=t14+c  I = - \dfrac{1}{4} \times 4\left[ {\dfrac{{{t^{\dfrac{1}{4}}}}}{{^{\dfrac{{4 \times 1}}{4}}}}} \right] + c \\\ I = - \dfrac{1}{4} \times 4\left[ { \times {t^{\dfrac{1}{4}}}} \right] + c \\\ I = - {t^{\dfrac{1}{4}}} + c \\\

Now put back the value we assumed, (1+1x4)=t\left( {1 + \dfrac{1}{{{x^4}}}} \right) = t .
I=(1+1x4)14+cI = - {\left( {1 + \dfrac{1}{{{x^4}}}} \right)^{\dfrac{1}{4}}} + c
Thus, option A is correct.

Note: Students are likely to get confused in taking the values common out of the bracket, they should try to do one step at a time to avoid mistakes. We can always use the properties of exponents to break and group together the powers as required by the question. Also, students should know which part to assume as a new variable to make the integration easy.