Solveeit Logo

Question

Question: $\int cos(3x+4) dx$...

cos(3x+4)dx\int cos(3x+4) dx

Answer

13sin(3x+4)+C\frac{1}{3}\sin(3x+4) + C

Explanation

Solution

Step 1: Let u=3x+4u = 3x+4. Then, dudx=3\frac{du}{dx} = 3 which gives dx=du3dx = \frac{du}{3}.

Step 2: Substitute into the integral:

cos(3x+4)dx=cos(u)du3=13cos(u)du\int \cos(3x+4) \, dx = \int \cos(u) \frac{du}{3} = \frac{1}{3}\int \cos(u) \, du

Step 3: Integrate:

13cos(u)du=13sin(u)+C\frac{1}{3}\int \cos(u) \, du = \frac{1}{3}\sin(u) + C

Step 4: Substitute back u=3x+4u = 3x+4:

13sin(3x+4)+C\frac{1}{3}\sin(3x+4) + C

Explanation (minimal): Substitute u=3x+4u = 3x+4; integrate cos(u)\cos(u) to get sin(u)\sin(u); revert substitution.