Solveeit Logo

Question

Question: \(\int _ { 1 } ^ { x } \frac { \log x ^ { 2 } } { x } d x =\)...

1xlogx2xdx=\int _ { 1 } ^ { x } \frac { \log x ^ { 2 } } { x } d x =

A

(logx)2( \log x ) ^ { 2 }

B

12(logx)2\frac { 1 } { 2 } ( \log x ) ^ { 2 }

C

logx22\frac { \log x ^ { 2 } } { 2 }

D

None of these

Answer

(logx)2( \log x ) ^ { 2 }

Explanation

Solution

I=1x2logxxdxI = \int _ { 1 } ^ { x } \frac { 2 \log x } { x } d x

Let logx=t\log x = tdxx=dt\frac { d x } { x } = d t

I=20logxtdt=2[t22]0logx=(logx)2\therefore I = 2 \int _ { 0 } ^ { \log x } t d t = 2 \left[ \frac { t ^ { 2 } } { 2 } \right] _ { 0 } ^ { \log x } = ( \log x ) ^ { 2 }.