QuestionReportQuestion: \(\int _ { 1 } ^ { e } \frac { 1 } { x } d x\) is equals to...∫1e1xdx\int _ { 1 } ^ { e } \frac { 1 } { x } d x∫1ex1dx is equals toA∞\infty∞B0C1Dlog(1+e)\log ( 1 + e )log(1+e)Answer1ExplanationSolution=[logx]1e=logee−log1=1= [ \log x ] _ { 1 } ^ { e } = \log _ { e } e - \log 1 = 1=[logx]1e=logee−log1=1.