Solveeit Logo

Question

Question: \(\int _ { 1 } ^ { 2 } \frac { x + 1 } { \sqrt { x - 1 } } d x\) is...

12x+1x1dx\int _ { 1 } ^ { 2 } \frac { x + 1 } { \sqrt { x - 1 } } d x is

A

Convergent and equal to 143\frac { 14 } { 3 }

B

Divergent and equal to 314\frac { 3 } { 14 }

C

Convergent and equal to ∞

D

Divergent and equal to ∞

Answer

Convergent and equal to 143\frac { 14 } { 3 }

Explanation

Solution

I=12x1dx+122x1dxI = \int _ { 1 } ^ { 2 } \sqrt { x - 1 } d x + \int _ { 1 } ^ { 2 } \frac { 2 } { \sqrt { x - 1 } } d x = [23(x1)3/2]12+[4x1]12\left[ \frac { 2 } { 3 } ( x - 1 ) ^ { 3 / 2 } \right] _ { 1 } ^ { 2 } + [ 4 \sqrt { x - 1 } ] _ { 1 } ^ { 2 }

= 14/314 / 3 which is finite so convergent.