Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi } x \sin ^ { 3 } x d x =\)...

0πxsin3xdx=\int _ { 0 } ^ { \pi } x \sin ^ { 3 } x d x =

A

4π3\frac { 4 \pi } { 3 }

B

2π3\frac { 2 \pi } { 3 }

C

0

D

None of these

Answer

2π3\frac { 2 \pi } { 3 }

Explanation

Solution

Let I=0πxsin3xdxI = \int _ { 0 } ^ { \pi } x \sin ^ { 3 } x d x …..(i)

Also I=0π(πx)sin3xdxI = \int _ { 0 } ^ { \pi } ( \pi - x ) \sin ^ { 3 } x d x …..(ii)

Adding (i) and (ii), we get

2I=π0πsin3xdx=π40π{3sinxsin3x}dx2 I = \pi \int _ { 0 } ^ { \pi } \sin ^ { 3 } x d x = \frac { \pi } { 4 } \int _ { 0 } ^ { \pi } \{ 3 \sin x - \sin 3 x \} d x

=π4[3cosx+cos3x3]0π=π4[313+313]=4π3= \frac { \pi } { 4 } \left[ - 3 \cos x + \frac { \cos 3 x } { 3 } \right] _ { 0 } ^ { \pi } = \frac { \pi } { 4 } \left[ 3 - \frac { 1 } { 3 } + 3 - \frac { 1 } { 3 } \right] = \frac { 4 \pi } { 3 }

Hence, I=2π3I = \frac { 2 \pi } { 3 } .