Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi } x\) f (sin x) dx is equal to...

0πx\int _ { 0 } ^ { \pi } x f (sin x) dx is equal to

A

πdx

B

π0π2f(sinx)\pi \int _ { 0 } ^ { \frac { \pi } { 2 } } f ( \sin x ) dx

C

dx

D

None of these

Answer

π0π2f(sinx)\pi \int _ { 0 } ^ { \frac { \pi } { 2 } } f ( \sin x ) dx

Explanation

Solution

I = 0πx\int _ { 0 } ^ { \pi } x f (sin x) dx

= 0π(πx)\int _ { 0 } ^ { \pi } ( \pi - x ) f sin (π – x) dx = π 0πf\int _ { 0 } ^ { \pi } f(sin x) dx – I

⇒ I = π2\frac { \pi } { 2 } 0πf\int _ { 0 } ^ { \pi } f(sin x) dx.

Again, I = π2\frac { \pi } { 2 } 0πf\int _ { 0 } ^ { \pi } f(sin x) dx = 2 π2\frac { \pi } { 2 } 0π/2f(sinx)dx\int _ { 0 } ^ { \pi / 2 } f ( \sin x ) d x

= π 0π/2f(sinx)dx\int _ { 0 } ^ { \pi / 2 } f ( \sin x ) d x