Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi } \frac { x \tan x } { \sec x + \tan x } d x =\)...

0πxtanxsecx+tanxdx=\int _ { 0 } ^ { \pi } \frac { x \tan x } { \sec x + \tan x } d x =

A

π21\frac { \pi } { 2 } - 1

B

π(π2+1)\pi \left( \frac { \pi } { 2 } + 1 \right)

C

π2+1\frac { \pi } { 2 } + 1

D

π(π21)\pi \left( \frac { \pi } { 2 } - 1 \right)

Answer

π(π21)\pi \left( \frac { \pi } { 2 } - 1 \right)

Explanation

Solution

I=0πxtanxsecx+tanxdx=0π(πx)tan(πx)sec(πx)+tan(πx)dxI = \int _ { 0 } ^ { \pi } \frac { x \tan x } { \sec x + \tan x } d x = \int _ { 0 } ^ { \pi } \frac { ( \pi - x ) \tan ( \pi - x ) } { \sec ( \pi - x ) + \tan ( \pi - x ) } d x

2I=π20πtanxsecx+tanxdx=π20πsinx1+sinxdx2 I = \frac { \pi } { 2 } \int _ { 0 } ^ { \pi } \frac { \tan x } { \sec x + \tan x } d x = \frac { \pi } { 2 } \int _ { 0 } ^ { \pi } \frac { \sin x } { 1 + \sin x } d x

=π2[0π1dx0πdx1+sinx]\frac { \pi } { 2 } \left[ \int _ { 0 } ^ { \pi } 1 d x - \int _ { 0 } ^ { \pi } \frac { d x } { 1 + \sin x } \right]

On solving, we get I=π22π=π(π21)I = \frac { \pi ^ { 2 } } { 2 } - \pi = \pi \left( \frac { \pi } { 2 } - 1 \right).