Question
Question: \(\int _ { 0 } ^ { \pi } \frac { x \tan x } { \sec x + \tan x } d x =\)...
∫0πsecx+tanxxtanxdx=
A
2π−1
B
π(2π+1)
C
2π+1
D
π(2π−1)
Answer
π(2π−1)
Explanation
Solution
I=∫0πsecx+tanxxtanxdx=∫0πsec(π−x)+tan(π−x)(π−x)tan(π−x)dx
⇒ 2I=2π∫0πsecx+tanxtanxdx=2π∫0π1+sinxsinxdx
=2π[∫0π1dx−∫0π1+sinxdx]
On solving, we get I=2π2−π=π(2π−1).