Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi } \frac { x \tan x } { \sec x + \cos x } d x =\)...

0πxtanxsecx+cosxdx=\int _ { 0 } ^ { \pi } \frac { x \tan x } { \sec x + \cos x } d x =

A

π24\frac { \pi ^ { 2 } } { 4 }

B

π22\frac { \pi ^ { 2 } } { 2 }

C

3π22\frac { 3 \pi ^ { 2 } } { 2 }

D

π23\frac { \pi ^ { 2 } } { 3 }

Answer

π24\frac { \pi ^ { 2 } } { 4 }

Explanation

Solution

Let I =

0πxtanxsecx+cosxdx=0π(πx)tan(πx)sec(πx)+cos(πx)dx\int _ { 0 } ^ { \pi } \frac { x \tan x } { \sec x + \cos x } d x = \int _ { 0 } ^ { \pi } \frac { ( \pi - x ) \tan ( \pi - x ) } { \sec ( \pi - x ) + \cos ( \pi - x ) } d x

It gives I=π20πsinx1+cos2xdxI = \frac { \pi } { 2 } \int _ { 0 } ^ { \pi } \frac { \sin x } { 1 + \cos ^ { 2 } x } d x

Now put cosx=t\cos x = tand solve, we get

I=π2×π2=π24I = \frac { \pi } { 2 } \times \frac { \pi } { 2 } = \frac { \pi ^ { 2 } } { 4 } .