Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 4 } ( \sqrt { \tan x } + \sqrt { \cot x } )\) dx is equal to...

0π/4(tanx+cotx)\int _ { 0 } ^ { \pi / 4 } ( \sqrt { \tan x } + \sqrt { \cot x } ) dx is equal to

A

2π2\frac { \sqrt { 2 } \pi } { 2 }

B

π2\frac { \pi } { 2 }

C

3π2\frac { \sqrt { 3 } \pi } { 2 }

D

None of these

Answer

2π2\frac { \sqrt { 2 } \pi } { 2 }

Explanation

Solution

0π/4sinx+cosxsinxcosxdx\int _ { 0 } ^ { \pi / 4 } \frac { \sin x + \cos x } { \sqrt { \sin x \cos x } } d x = 2\sqrt { 2 } = 2\sqrt { 2 } 0π/4sinx+cosx1(sinxcosx)2\int _ { 0 } ^ { \pi / 4 } \frac { \sin x + \cos x } { \sqrt { 1 - ( \sin x - \cos x ) ^ { 2 } } }

Let sinx – cosx = t

Ž (cosx + sinx) dx = dt

= 2\sqrt { 2 } = 2\sqrt { 2 }