Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 4 } [ \sqrt { \tan x } + \sqrt { \cot x } ] d x\) equals...

0π/4[tanx+cotx]dx\int _ { 0 } ^ { \pi / 4 } [ \sqrt { \tan x } + \sqrt { \cot x } ] d x equals

A

2π\sqrt { 2 } \pi

B

π2\frac { \pi } { 2 }

C

π2\frac { \pi } { \sqrt { 2 } }

D

2π2 \pi

Answer

π2\frac { \pi } { \sqrt { 2 } }

Explanation

Solution

=20π/4sinx+cosx1(sinxcosx)2dx= \sqrt { 2 } \int _ { 0 } ^ { \pi / 4 } \frac { \sin x + \cos x } { \sqrt { 1 - ( \sin x - \cos x ) ^ { 2 } } } d x

Put sinxcosx=t\sin x - \cos x = t; (cosx+sinx)dx=dt( \cos x + \sin x ) d x = d t

I=210dt1t2\therefore I = \sqrt { 2 } \int _ { - 1 } ^ { 0 } \frac { d t } { \sqrt { 1 - t ^ { 2 } } }

I=2[sin1t]10=2[0(π/2)]=π2I = \sqrt { 2 } \left[ \sin ^ { - 1 } t \right] _ { - 1 } ^ { 0 } = \sqrt { 2 } [ 0 - ( - \pi / 2 ) ] = \frac { \pi } { \sqrt { 2 } }.