Question
Question: \(\int _ { 0 } ^ { \pi / 4 } \frac { \sec ^ { 2 } x } { ( 1 + \tan x ) ( 2 + \tan x ) } d x =\)...
∫0π/4(1+tanx)(2+tanx)sec2xdx=
A
loge(32)
B
loge3
C
21loge(34)
D
loge(34)
Answer
loge(34)
Explanation
Solution
Put 1+tanx=t⇒sec2xdx=dt
∴∫0π/4(1+tanx)(2+tanx)sec2xdx
=∫12t(1+t)dt=∫12tdt−∫121+tdt=[logt−log(1+t)]12
=loge2−loge3+loge2=loge34.