Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 4 } \frac { \sec ^ { 2 } x } { ( 1 + \tan x ) ( 2 + \tan x ) } d x =\)...

0π/4sec2x(1+tanx)(2+tanx)dx=\int _ { 0 } ^ { \pi / 4 } \frac { \sec ^ { 2 } x } { ( 1 + \tan x ) ( 2 + \tan x ) } d x =

A

loge(23)\log _ { e } \left( \frac { 2 } { 3 } \right)

B

loge3\log _ { e } 3

C

12loge(43)\frac { 1 } { 2 } \log _ { e } \left( \frac { 4 } { 3 } \right)

D

loge(43)\log _ { e } \left( \frac { 4 } { 3 } \right)

Answer

loge(43)\log _ { e } \left( \frac { 4 } { 3 } \right)

Explanation

Solution

Put 1+tanx=tsec2xdx=dt1 + \tan x = t \Rightarrow \sec ^ { 2 } x d x = d t

0π/4sec2x(1+tanx)(2+tanx)dx\therefore \int _ { 0 } ^ { \pi / 4 } \frac { \sec ^ { 2 } x } { ( 1 + \tan x ) ( 2 + \tan x ) } d x

=12dtt(1+t)=12dtt12dt1+t=[logtlog(1+t)]12= \int _ { 1 } ^ { 2 } \frac { d t } { t ( 1 + t ) } = \int _ { 1 } ^ { 2 } \frac { d t } { t } - \int _ { 1 } ^ { 2 } \frac { d t } { 1 + t } = [ \log t - \log ( 1 + t ) ] _ { 1 } ^ { 2 }

=loge2loge3+loge2=loge43= \log _ { e } 2 - \log _ { e } 3 + \log _ { e } 2 = \log _ { e } \frac { 4 } { 3 }.