Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 4 } \frac { 4 \sin 2 \theta d \theta } { \sin ^ { 4 } \theta + \cos ^ { 4 }...

0π/44sin2θdθsin4θ+cos4θ=\int _ { 0 } ^ { \pi / 4 } \frac { 4 \sin 2 \theta d \theta } { \sin ^ { 4 } \theta + \cos ^ { 4 } \theta } =

A

π/4\pi / 4

B

π/2\pi / 2

C

π\pi

D

None of these

Answer

π\pi

Explanation

Solution

40π/4sin2θdθsin4θ+cos4θ=40π/42sinθcosθdθsin4θ+cos4θ4 \int _ { 0 } ^ { \pi / 4 } \frac { \sin 2 \theta d \theta } { \sin ^ { 4 } \theta + \cos ^ { 4 } \theta } = 4 \int _ { 0 } ^ { \pi / 4 } \frac { 2 \sin \theta \cos \theta d \theta } { \sin ^ { 4 } \theta + \cos ^ { 4 } \theta }

=40π/42tanθsec2θdθtan4θ+1= 4 \int _ { 0 } ^ { \pi / 4 } \frac { 2 \tan \theta \sec ^ { 2 } \theta d \theta } { \tan ^ { 4 } \theta + 1 }

{Dividing numerator and denominator by cos4θ\cos ^ { 4 } \theta}

Now put401dtt2+1=4[tan1t]01=4[14π0]=π4 \int _ { 0 } ^ { 1 } \frac { d t } { t ^ { 2 } + 1 } = 4 \left[ \tan ^ { - 1 } t \right] _ { 0 } ^ { 1 } = 4 \left[ \frac { 1 } { 4 } \pi - 0 \right] = \pi.