Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { \sqrt { \sin x } } { \sqrt { \sin x } + \sqrt { \cos x } } d x\...

0π/2sinxsinx+cosxdx\int _ { 0 } ^ { \pi / 2 } \frac { \sqrt { \sin x } } { \sqrt { \sin x } + \sqrt { \cos x } } d x equals

A

p/2

B

p/4

C

p

D

2p

Answer

p/4

Explanation

Solution

Using property P-4, we have

I = 0π/2cosxcosx+sinxdx\int _ { 0 } ^ { \pi / 2 } \frac { \sqrt { \cos x } } { \sqrt { \cos x } + \sqrt { \sin x } } d x

Adding it to given integral we have

2I = = = p/2

\ I = p/4