Question
Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { d x } { a ^ { 2 } \cos ^ { 2 } x + b ^ { 2 } \sin ^ { 2 } x } =...
∫0π/2a2cos2x+b2sin2xdx=
A
B
π2ab
C
abπ
D
2abπ
Answer
2abπ
Explanation
Solution
Dividing the numerator and denominator by cos2x we get
I=∫0π/2a2+b2cos2xsin2xcos2x1dx=∫0π/2a2+b2tan2xsec2xdx.
Substituting x=2πthen
Therefore, I=∫0∞a2+t2bdt=b1[a1tan−1(at)]0∞
=ab1[tan−1∞−tan−10]=ab1(2π−0)=2abπ.