Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { 2 \pi } \frac { \sin 2 \theta } { a - b \cos \theta } d \theta =\)...

02πsin2θabcosθdθ=\int _ { 0 } ^ { 2 \pi } \frac { \sin 2 \theta } { a - b \cos \theta } d \theta =

A

1

B

2

C

π4\frac { \pi } { 4 }

D

0

Answer

0

Explanation

Solution

I=02πsin2θabcosθdθ=02πsin(2π2θ)abcos(2πθ)dθI = \int _ { 0 } ^ { 2 \pi } \frac { \sin 2 \theta } { a - b \cos \theta } d \theta = \int _ { 0 } ^ { 2 \pi } \frac { \sin ( 2 \pi - 2 \theta ) } { a - b \cos ( 2 \pi - \theta ) } d \theta

⇒ I =02πsin2θabcosθdθ= - \int _ { 0 } ^ { 2 \pi } \frac { \sin 2 \theta } { a - b \cos \theta } d \theta

2I=002πsin2θabcosθdθ=0\Rightarrow 2 I = 0 \Rightarrow \int _ { 0 } ^ { 2 \pi } \frac { \sin 2 \theta } { a - b \cos \theta } d \theta = 0 .