Solveeit Logo

Question

Question: \(\int _ { - \pi } ^ { \pi } \frac { 2 x ( 1 + \sin x ) } { 1 + \cos ^ { 2 } x }\) dx is -...

ππ2x(1+sinx)1+cos2x\int _ { - \pi } ^ { \pi } \frac { 2 x ( 1 + \sin x ) } { 1 + \cos ^ { 2 } x } dx is -

A

π24\frac { \pi ^ { 2 } } { 4 }

B

p2

C

Zero

D

π2\frac { \pi } { 2 }

Answer

p2

Explanation

Solution

ππ2x(1+sinx)1+cos2x\int _ { - \pi } ^ { \pi } \frac { 2 x ( 1 + \sin x ) } { 1 + \cos ^ { 2 } x } dx

= dx + 2 dx

I = 0 + 4

I = 4

I = 4 0π(πx)sinx1+cos2x\int _ { 0 } ^ { \pi } \frac { ( \pi - x ) \sin x } { 1 + \cos ^ { 2 } x }

Ž I = 4p 0πsinx1+cos2x\int _ { 0 } ^ { \pi } \frac { \sin x } { 1 + \cos ^ { 2 } x } dx – 4 0πxsinx1+cos2x\int _ { 0 } ^ { \pi } \frac { x \sin x } { 1 + \cos ^ { 2 } x } dx

2I = 4pdx

Let cos x = t

Ž sin x dx = – dt

\I = 2p ]11] _ { - 1 } ^ { 1 }

= 2p [tan–1 (1) – tan–1 (–1)] = 2p [π4+π4]\left[ \frac { \pi } { 4 } + \frac { \pi } { 4 } \right]

= 2p × π2\frac { \pi } { 2 } = p2.