Solveeit Logo

Question

Question: \(\int _ { - 1 } ^ { 1 } \log \frac { 2 - x } { 2 + x } d x =\)...

11log2x2+xdx=\int _ { - 1 } ^ { 1 } \log \frac { 2 - x } { 2 + x } d x =

A

2

B

1

C

1- 1

D

0

Answer

0

Explanation

Solution

Let f(x)=log(2x2+x)f ( x ) = \log \left( \frac { 2 - x } { 2 + x } \right)

f(x)=log(2x2+x)1=log(2x2+x)=f(x)\Rightarrow f ( - x ) = \log \left( \frac { 2 - x } { 2 + x } \right) ^ { - 1 } = - \log \left( \frac { 2 - x } { 2 + x } \right) = - f ( x )

\therefore 11log(2x2+x)dx=0\int _ { - 1 } ^ { 1 } \log \left( \frac { 2 - x } { 2 + x } \right) d x = 0 .