Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

0xlog(cotx+tant)dt\int_{0}^{x}{\log \,(\cot \,x\,+\,\tan t)\,dt} =

A

xlog(sinx)x\,\log \,(\sin \,x)

B

xlog(sinx)-x\,\log \,(\sin \,x)

C

xlog(cosx)x\,\log \,(cos\,x)

D

xlog(cosx)-x\,\log \,(cos\,x)

Answer

xlog(sinx)-x\,\log \,(\sin \,x)

Explanation

Solution

Let I=0xlog(cotx+tant)dtI=\int_{0}^{x}{\log \,(\cot \,x+\tan t)\,dt}
=0xlog(cosxsinx+sintcost)dt=\int_{0}^{x}{\log \left( \frac{\cos x}{\sin x}+\frac{\sin t}{\cos t} \right)dt}
=0x[logcos(xt)logsinxlogcost]dt=\int_{0}^{x}{[\log \,\\{\cos \,(x-t)\\}-\log \,\sin \,x-\log \,\cos t]dt}
=0xlogcos(xx+t)dt=\int_{0}^{x}{\log \,\\{\cos (x-x+t)\\}\,dt} 0xlogsinxdt0xlogcostdt-\int_{0}^{x}{\log \,\,\sin x\,dt-\int_{0}^{x}{\log \cos \,tdt}}
=0xlogcostdt[tlogsinx]0x0xlogcostdt=\int_{0}^{x}{\log \,\cos t\,dt-[t\,\log \,\sin \,x]_{0}^{x}-\int_{0}^{x}{\log \,\,\cos \,t\,\,dt}}
=(xlogsinx)=-(x\,\log \,\sin x)