Question
Mathematics Question on Integrals of Some Particular Functions
∫0xlog(cotx+tant)dt =
A
xlog(sinx)
B
−xlog(sinx)
C
xlog(cosx)
D
−xlog(cosx)
Answer
−xlog(sinx)
Explanation
Solution
Let I=∫0xlog(cotx+tant)dt
=∫0xlog(sinxcosx+costsint)dt
=∫0x[logcos(x−t)−logsinx−logcost]dt
=∫0xlogcos(x−x+t)dt −∫0xlogsinxdt−∫0xlogcostdt
=∫0xlogcostdt−[tlogsinx]0x−∫0xlogcostdt
=−(xlogsinx)